• 011-41219999 | 09999-127085
  • whatsapp us

Electroreception IELTS Reading Answers

December 28, 2023
Electroreception IELTS Reading Answers

Read the Electroreception Reading Passage and review the answers provided below. Practice the test and try to complete it within 20 minutes. The correct Electroreception IELTS Reading Answers for students are provided.

Book Free Counselling Session
Please enable JavaScript in your browser to complete this form.

Electroreception IELTS Reading Answers

Question NumberCorrect Answer
1C
2G
3B
4A
5H
6D
7Respiratory Movements/Signals
8Tail
9Electric Currents
10Olfactory Organs
11Electric Signals
12Sinewy Muscle
13Electric Field

Electroreception Reading Passage

You should spend about 20 minutes on Questions 1-13 which are based on Reading Passage 1 below.

A

Open your eyes in seawater and it is difficult to see much more than a murky, bleary green colour. Sounds, too, are garbled and difficult to comprehend. Without specialised equipment humans would be lost in these deep-sea habitats, so how do fish make it seem so easy? Much of this is due to a biological phenomenon known as electroreception – the ability to perceive and act upon electrical stimuli as part of the overall senses. This ability is only found in aquatic or amphibious species because water is an efficient conductor of electricity.

B

Electroreception comes in two variants. While all animals (including humans) generate electric signals, because they are emitted by the nervous system, some animals have the ability – known as passive electroreception – to receive and decode electric signals generated by other animals in order to sense their location.

C

Other creatures can go further still, however. Animals with active electroreception possess bodily organs that generate special electric signals on cue. These can be used for mating signals and territorial displays as well as locating objects in the water. Active electroreceptors can differentiate between the various resistances that their electrical currents encounter. This can help them identify whether another creature is prey, predator or something that is best left alone. Active electroreception has a range of about one body length – usually just enough to give its host time to get out of the way or go in for the kill.

D

One fascinating use of active electroreception – known as the Jamming Avoidance Response mechanism – has been observed between members of some species known as the weakly electric fish. When two such electric fish meet in the ocean using the same frequency, each fish will then shift the frequency of its discharge so that they are transmitting on different frequencies. Doing so prevents their electroreception faculties from becoming jammed. Long before citizens’ band radio users first had to yell “Get off my frequency!” at hapless novices cluttering the air waves, at least one species had found a way to peacefully and quickly resolve this type of dispute.

E

Electroreception can also play an important role in animal defences. Rays are one such example. Young ray embryos develop inside egg cases that are attached to the sea bed. The embryos keep their tails in constant motion so as to pump water and allow them to breathe through the egg’s casing. If the embryo’s electroreceptors detect the presence of a predatory fish in the vicinity, however, the embryo stops moving (and in so doing ceases transmitting electric currents) until the fish has moved on. Because marine life of various types is often travelling past, the embryo has evolved only to react to signals that are characteristic of the respiratory movements of potential predators such as sharks.

F

Many people fear swimming in the ocean because of sharks. In some respects, this concern is well grounded – humans are poorly equipped when it comes to electroreceptive defence mechanisms. Sharks, meanwhile, hunt with extraordinary precision. They initially lock onto their prey through a keen sense of smell (two thirds of a shark’s brain is devoted entirely to its olfactory organs). As the shark reaches proximity to its prey, it tunes into electric signals that ensure a precise strike on its target; this sense is so strong that the shark even attacks blind by letting its eyes recede for protection.

G

Normally, when humans are attacked it is purely by accident. Since sharks cannot detect from electroreception whether or not something will satisfy their tastes, they tend to “try before they buy”, taking one or two bites and then assessing the results (our sinewy muscle does not compare well with plumper, softer prey such as seals). Repeat attacks are highly likely once a human is bleeding, however; the force of the electric field is heightened by salt in the blood which creates the perfect setting for a feeding frenzy. In areas where shark attacks on humans are likely to occur, scientists are exploring ways to create artificial electroreceptors that would disorient the sharks and repel them from swimming beaches.

H

There is much that we do not yet know concerning how electroreception functions. Although researchers have documented how electroreception alters hunting, defence and communication systems through observation, the exact neurological processes that encode and decode this information are unclear. Scientists are also exploring the role electroreception plays in navigation. Some have proposed that salt water and magnetic fields from the Earth’s core may interact to form electrical currents that sharks use for migratory purposes.

Electroreception Passage Questions

Questions 1-6

Reading Passage 1 has eight paragraphs, A–H.
Which paragraph contains the following information?
Write the correct letter, A–H, in boxes 1–6 on your answer sheet.

1    How electroreception can be used to help fish reproduce
2    A possible use for electroreception that will benefit humans
3    The term for the capacity which enables an animal to pick up but not send out electrical signals
4    Why only creatures that live in or near water have electroreceptive abilities
5    How electroreception might help creatures find their way over long distances
6    A description of how some fish can avoid disrupting each other’s electric signals

Questions 7–9

Label the diagram.

Choose NO MORE THAN TWO WORDS from the passage for each answer.

Write your answers in boxes 7–9 on your answer sheet.

Shark’s 7 ………………… alert the young ray to its presence
Embryo moves its 8 ………………… in order to breathe
Embryo stops sending 9 ………………… when predator close by

Questions 10–13

Complete the summary below.
Choose NO MORE THAN THREE words from the passage for each answer.

Write your answers in boxes 10–13 on your answer sheet.

Shark Attack

A shark is a very effective hunter. Firstly, it uses its 10 ____________ to smell its target. When the shark gets close, it uses 11 ____________ to guide it toward an accurate attack. Within the final few feet the shark rolls its eyes back into its head. Humans are not popular food sources for most sharks due to their 12 ____________ Nevertheless, once a shark has bitten a human, a repeat attack is highly possible as salt from the blood increases the intensity of the 13 ____________

Explanation of Electroreception Reading Answers

  1. Answer: C 

Question Type: Matching Information 

Explanation: The third paragraph states “However, animals with active electroreception possess bodily organs that generate special electric signals on cue. These can be used for mating signals…”.  Therefore, it can be deduced from here that the information pertaining to how electroreception can be used to allow fish to reproduce, i.e., animals that are electroreceptive have organs that have the ability to create electric signals that help them in reproduction. Thus, the answer is C. 

  1. Answer: G 

Question Type: Matching Information 

Explanation: In the mentioned paragraph, it states: “In areas where shark attacks on humans are likely to occur, scientists are exploring ways to create artificial electroreceptors that would disorient the sharks and repel them from swimming beaches.”. The line from Paragraph G that was just quoted states that scientists are able to use electroreception to confuse sharks and keep them away from beaches where people swim, which is advantageous to people. The response is therefore G.

  1. Answer: B 

Question Type: Matching Information

Explanation: Paragraph B clearly states that ““…some animals have the ability – known as passive electroreception – to receive and decode electric signals generated by other animals in order to sense their location.”. To sum it up, paragraph B informs readers about the capacity that allows an animal to pick up but not send out electrical signals. This condition is known as passive electroreception, with the ultimate answer being B. 

  1. Answer: A 

Question type: Matching Information 

Explanation: Paragraph A concludes with the statement “This ability is only found in aquatic or amphibian species because water is an efficient conductor of electricity.”. It draws attention to the fact that the first paragraph explains why only organisms that are found in or close to water are capable of electroreception—water is a powerful electrical conductor. Thus, the response is A. 

  1. Answer: H 

Question Type: Matching Information 

Explanation: In the last two sentences of paragraph H, “Scientists are also exploring the role electroreception plays in navigation. Some have proposed that salt water and magnetic fields from the Earth’s core may interact to form electrical currents that sharks use for migratory purposes.” clearly indicates that this paragraph refers to the many ways through which electroreception might help animals have a sense of direction over long distances. Therefore, the answer is H. 

  1. Answer: D

Question Type: Matching Information 

Explanation: In the fourth paragraph, it reads: “When two such electric fish meet in the ocean using the same frequency, each fish will then shift the frequency of its discharge so that they are transmitting on different frequencies. By doing this, animals can keep their electroreception abilities from being stuck. It draws attention to the fact that the fourth paragraph describes how certain fish may prevent interfering with one another’s electrical signals. The most appropriate response then is D. 

  1. Answer: Respiratory Movements 

Question Type: Diagram Completion 

Explanation: According to paragraph E, “The embryo has evolved only to react to signals that are characteristic of the respiratory movements of potential predators such as sharks,” because “marine life of various types is often travelling past.” This suggests that the shark’s breathing movements notify the juvenile ray’s embryo of its existence. Hence, the best solution is “Respiratory movements”.

  1. Answer: Tail 

Question Type: Diagram Completion 

Explanation: The line “The embryos keep their tails in constant motion so as to pump water and allow them to breathe through the egg’s casing” indicates that the ray embryo moves its tail constantly so as to breathe. Therefore, the most appropriate answer is ‘tail’.

  1. Answer: Electric Current 

Question Type: Diagram Completion 

Explanation: In the line “If the embryo’s electroreceptors detect the presence of a predatory fish in the vicinity, however, the embryo stops moving (and in so doing ceases transmitting electric currents) until the fish has moved on.” Therefore, the embryo ceases to send electric current when the predatory fish comes into close contact. Thus, the answer is ‘electric current’.

  1. Answer: Olfactory Organs 

Question Type: Summary Completion 

Explanation: Paragraph F has the corresponding line “They initially lock onto their prey through a keen sense of smell (two thirds of a shark’s brain is devoted entirely to its olfactory organs).” Therefore, from this line, we can infer that sharks often utilise their olfactory organs, located in a specific part of their brain in order to sense their prey. Thus, the answer is olfactory organs. 

  1. Answer: Electric Signals

Question Type: Summary Completion 

Explanation: The stated line “Asthe shark reaches proximity to its prey, it tunes into electric signals that ensure a precise strike on its target..”. This clearly indicates that as and when the shark gets in close proximity to its target (prey), it uses electric signals in order to execute an accurate attack. Therefore, the answer is ‘electric signals’. 

  1. Answer: Sinewy Muscle 

Question Type: Summary Completion 

Explanation: In paragraph G, the line “Since sharks cannot detect from electroreception whether or not something will satisfy their tastes, they tend to “try before they buy”, taking one or two bites and then assessing the results (our sinewy muscle does not compare well with plumper, softer prey such as seals)” is mentioned. This clearly indicates that human beings are not popular food choices for most sharks because of their sinewy muscles. These muscles make them less plump and fleshy when compared to softer targets like seals. Therefore, the most appropriate answer is ‘sinewy muscle’. 

  1. Answer: Electric Field 

Question Type: Summary Completion 

Explanation: The second-last paragraph states “Repeat attacks are highly likely once a human is bleeding, however; the force of the electric field is heightened by salt in the blood which creates the perfect setting for a feeding frenzy.”. This line suggests that the moment a shark has preyed on a human and bitten it, another attack is highly possible. This is because the salt from the blood increases the intensity of the electric field. Therefore, the answer is ‘electric field’. 

Other passage to practice

The Origins of Laughter Reading Answers IELTS

Stonehenge IELTS Reading Answers

What’s So Funny IELTS Reading Answers 

Article Categories:
IELTS Reading

Neha Sharma is an IELTS faculty with a decade of experience in teaching IELTS. She holds a PhD in English from Stanford University, USA. Excelling in tailoring her teaching to individual student needs, she has helped over 50,000 students achieve their target scores. Actively involved in research, she ensures that her methods remain effective and innovative.

Leave a Reply

Your email address will not be published. Required fields are marked *

Get a Chance to Study Abroad with upto 100% Scholarship

Please enable JavaScript in your browser to complete this form.